TLDR; Plots and practice from Forecasting Principles and Practice (Rob J Hyndman 2021).
Ch. 2 Time series graphics
Unhide
autoplot(tibble_energy, kwh) +
labs(
title = "Energy Usage",
x = "Date"
)
Unhide
tibble_energy |>
subset(subset = date >= "2024-06-30" & date <= "2024-07-20") |>
autoplot(kwh) +
labs(
title = "Energy Usage",
subtitle = "July 2024",
x = "Date"
)+
scale_x_date(date_breaks = "1 day", date_labels = "%a %b %d") +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
Patterns (ch. 2 page 37)
- little or not trend
- seasonality
- no apparent cycles
Seasonal plots
Unhide
tibble_energy |>
fill_gaps() |>
gg_season(kwh, period = "1y")+
labs(
title = "Sesaonal Plot",
x = "Date"
)+
scale_x_date(
date_breaks = "1 month",
date_labels = "%b", # Display months (Jan, Feb, etc.)
sec.axis = sec_axis(
trans = ~ ., # Keeps the same scale
name = "Quarter",
labels = function(x) paste0("Q", ceiling(as.numeric(format(x, "%m")) / 3))
)
)
Unhide
tibble_energy |>
fill_gaps() |>
gg_season(kwh, period = "week")+
labs(
title = "Sesaonal Plot",
x = "Date"
)+
theme(
legend.position = "none"
)
Unhide
tibble_energy |>
fill_gaps() |>
gg_season(kwh, period = "month")+
labs(
title = "Sesaonal Plot",
x = "Date"
)+
theme(
legend.position = "none"
)
Takeaways
- only obvious seasonal pattern is annual
Seasonal subseries plots
Plots illegible.
Ch. 3 Time series decomposition
Rob J Hyndman, George Athanasopoulos. 2021. Forecasting Principles and Practice. Third. Otexts.